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-[
FOREWORD

tF
; This report presents th_ results of an experimental study conducted at GM

i [ i Defense Research Laboratories, during the period March 1963 to March 1964,
_: on the dissociation of carbon dioxide at ele,-ated temperatures behind shock

], This work for the Ames Research National
waves. was performed Center,

_:, Aeronautics and Space Admivistration, under Contract No. NAS 7-217. A

_ previous report (GM DRL Technical Report No. TR64-14, February 1964)
U

covers the analytical phase of this contract.
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The dissociation rates of carbon dioxide have been measured at elevated tempera-

ii tures behind shock waves in mixtures with argon and nitrogen. The disappearance

of carbon dioxide was monitored by followir, g the emission in the 4. 3_ and 2.7U

l irLfrared bands. Over the range from 3,300 to 6,000°K at total pressures of 0.5
J

to 1.0 atm, the bimolecular rate constant for the process

11 CO2 + M-------_CO + O + M

"1 in mixtures of 0. 5 to 2.0 percent carbon dioxide in argon is given by

kA = 2.26 x 1011T 1/2 e -71' 900/RTmole-1 cm3 sec-1
t

)
For dilute mixtures of 1.0 percent carbon dioxide in nitrogen at shock tempera-

_1 tures from 3,100 to 7,700°K the corresponding rate constant is
!

1.18x 1011T 1/2 -73,200/RT ^. -1 3 -1
kN2 = e ,,uze cm sec .

The rate constant in nitrogen mixtures was independent of the total.pressure from

0. 5 to 5.0 arm for a series of tests at about 4,800°K. Variations of mixture ratios

i ofup to 20 percentcarbon dioxideinnitrogenyieldedresults,v:itlnnthe experi-

mental spread for thedilutemixtures.

1
The observed activationenergiesare wellbelow the dissociationenergy (126

• I kcal/mol) for the process
f

. CO2(II;) +M_CO(1Z)+O(3p) +M.

Possible mechanisms for the dissociation are discussed in the report. X_

, /

,,'_,

ill
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INTRODUCTION

Consideration of the problems attendant on the entry of ballistic probes into the

atmospheres of Mars and Venus points up the need for kinetic studies on the

high-temperature carbon dioxide-nitrogen system. The radiative contribution

of CN formed in the stagnation zone on a Martian probe could significantly

increase the stagnation heating. {1J*" At the higher velocities of a Venus entry,

radiative heating could be even more important. Similarly the ionization-pro-

duced in the flow field about such probes is dependent on the complex chemistry

leading to the ionized species. The primary process in the high-temperature

carbon dioxide-nitrogen system from which all subsequent chemistry follows is

the dissociation of carbon dioxide. Howe, Viegas, and Sheaffer (_') in an analysis

of the nonequflibrium dissociation flow field behind shocks in carbon dioxide

pointed up the need for rate information for carbon dioxide dissociation. The

current report describes some measurements on the dissociation rates behind

J shocks in CO2-A and CO2-N 2 mixtures.

Until recently, little information indeed was available on carbon dioxide dissocia-Jt

tion kinetics. Hurle and Gaydon_3Jreported¢' a few measurements on dissociation

relaxation behind shock waves in pure carbon dioxide. Brabbs, Belles and

cL(4)m deZlatari a a measurements on carbon dioxide-argon mixtures over the

rmlge from 2,500 to 3,000°K. Davies (5) reported on measurements on carbon

dioxide mixtures in argon and nitrogen at 3,500 to 6,000c_K and more recently (6)

to 11,000°K in argon mixtures.

Previously reported rate measurements(7)on carbon dioxide-argon mixtures are ;:

summarized inthepresent report,alongwithnew resultson carbon dioxide- ':

nitrogenmixtures. Carbon d}oxidedisappearancewas followedby recordingthe _'

I

* Raised numbers in parentheses indicate references, listed at the end of this /_
report.

i
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li variation in emission in the 2.7/_ or 4.3U bands. Dilute mixtures of carbon

_i dioxide in argon and nitrogen were used to study the dissociation under con-ditions of near-con_tavt temperature and pressure. In addition, mixtures of

up to 20 percent carbon dioxide in nitrogen were studied. The carbon dioxide-

argon studies were conducted in a six-inch-diameter shock tube behind incident

i °- shocks. The nitrogen diluent studies were performed in a three.inch-diameter

Ii" shock tube behind reflected shocks which were required to produce the tempera-
i tures necessary for the dissociation. The shock tubes and associated instru-

} i_ mentation are discussed in the next section.
L_

0
l

, , ,
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EXPERIg_ENTALAPPARATUS

l
.I

SHOCK TUBES

.] Both shock tubes used in the study are simple uniform bore tubes. The 6-inch

tube has a 4-foot driver and a 30.foot test section. The ._ube has a _ioned bore

to facilitate cleaning and pump down. Stainless steel scribed diaphragms are

used in a small double diaphragm rupture assembly designed to reproducibly

rupture diaphragms at predetermined pressures. A short section three inches
long with a diaphragm on each end is clamped between the driver and test

_l sections. In operation, the test gas is admitted to the test section to pressure" Pl" The helium driver gas is then admitted to the driver and intermediate

sections to a pressure 0.5 P4' where P4 is the desired driver pressure. The

.I valve to the intermediate section is then closed and helium is pumped into the

driver section to the pressure P4" The diaphragms are chosen to rupture at

} about 0.75 P4' thus they readily withstand the differential, 0. 5 P4' across
each diaphragm. To fire the tube the short section is vented to the atmosphere,

1 increasing the differential across the upstream diaphragm. The upstream

] diaphragm then ruptures, followed by the downstream diaphragm.

i!
The driver and test sections are evacuated by a mechanical pump. In addition,

1 the test section is evacuated by a 4-inch VEECO oil diffusion pump. The large ._,
vacuum port at the shock tube is located near the diaphragm and closes flush

i'l with the tube wall to avoid generatiug disturbances behind the incident shocks.Initial pressures in the test section are measured with Wallace and Tiernan

absolute pressure gauges. Commercial helium is used as the driver gas. Driver

i pressures of up to 2,000 psi are available and are measured with Heise bourdon-
tube gauges.

:C

3 '_ ,;,S"_
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The 3.inch shock tube has a 4-foot driver and 24-foot test section and is in all

_ other respects very similar to the 6-.inch tube. Both shock tubes have identicalgas handling systems. Matheson gases (argon-purity 99. 998 percent; nitrogen-

_ prepurified grade-purity 99.996 percent; and carbon dioxide-Coleman grade-
l _ purity 99.99 percent) were used to prepare mixtures by the method of partial

pressures in 16-liter stainless steel gas storage bottles.

The shock tubes are cleaned before each firing by drawing snug-fitting cylindri-

-i cal plugs wrapped with alcohol-soaked cheese cloth through the test section. Theprocess is reported several tizues with c.ler._, .;_c, _ _mtil the plugs come through

SHOCK VELOCITY

"_/-!, The conditions behind incide_t _nd/or reflected shocks in the car_ ._': _%xide

mixtures in argon or nitrogen a-e determined from measurementL ,;i :..e shock

_ velocities. Shock velocitie_ ' --_asured _y monitoring the transit _,_ _ across
two measured intervals along t,'_e test section. Thin film gauges, p .... _red from

I I Hanovia Bright Platinum No. 5 _ain*e_ and fired on glass blank_ ':_ ':_ea

hermetically sealed feed-through c-_,ctrical leads_ are used !_ --:_, ,_. shock

(

arrival at the velocity stations. (8) The gau_es _tre mouute,_ ,',_' _ith the

,! shock-tube wall. The outputs of the gauges are amplified :.':. :,,,d to start

and stop a pair of microsecond time interval meters. Shc_:],, v,_loeities can be

_i measured to ab(_lt 1/2 percent, corresponding to less th_ _ percent uncertainty!
in equilibrium temperatures behind _ncident or reflected shocks. Depending upon

i i the valiaity of th? assumptions regarding departures from equilibrium, the
) uncertainties in the temperature assessments may, of course, exceed 1 percent.

!i _ OPTICAL qYSTEM

The same optical system was used for the argon and nitrogen diluent studies in

_I the 3.inch and 6-inch t_!t"% resl,,ectively. Carbon dioxide disappearance is followed

t,,, m nnttorin_ the 4, 30# or 2.85/_ emission behind the shocks.

_/ t]

] 966003583-009
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A schematic of the optical system is shown in FJ_;ure !. Pairs of calcium

• _ fluoride windows, W (0. 50 in. dia. in the 6-inch tube avd 0. 375 in dia. in
I the 3-inch tube), are mounted almost flush with the shock tube walls, T. A

pair of slits, S1 and $2, 1 mm wide and made of 3 rail shim stock are lined

up perpendicular to the tube axis. The slits along with the globar source, G,

and the sector wheel, C, serve to align the optical system and check its
"'t

j response beforeeach firiag.

_| Radiationfrom the shocked gases iscollimatedby S2 and $3, which isalso
) 1 mm wide. The fieldsof view parallelto the tubeaxes are a maximum of

2 ram. S2 isimaged on the e:_tranceslits¢f a Perkin Elmer Model 98

i_ Monochromator, P, via mirrors M1, M2, and M3. The exit slit of the

monochromator is imaged with a 6-fold demagnification by an ellipsoidal mirror,

_I- id4,on the sensltiveelement of a PhilcoISC-301 indium antimonidedetector.

The detectoroutputisfed intoa TektronixType 1121 wideband amplifieracross

i1 a 500-ohm load resistance to maintain the fast-rise-time capability of the system.The output of the 1121 amplifier goes to a Tektronix oscilloscope and _c trace

• isrecorded witha polaroidcamera. The detector-amplifiercombinationrise

time was determined by sweeping a focusedlightbeam across the sensitive

element ofthe detector.A high speed Beckman and Whitley Q spoilerwas used

( to produce a pulsed beam having a rise time of 0. 4# sec. The detector-amplifier
J

system track,",_nerisingsignal.However, the decay time was foundtobe about

"] l#sec. The response times are adequateforthe present study.

(

........ i
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i, RESULTS

I
I

CARBON DIOXII)E-A_R.GONMIXTURES
)

The dissociation of carboTJ dioxide in argon mixtures was monitored at 4.30/J.

Observations were made behind incident shocks at a station 4 feet from the end
-1

j wall of the 6-inch shock tube. In order to avoid excessive attenuation of the
emitted radiation by atmospheric carbon dioxide in the long optical path outside

] the shock tube, the optical system was enclosed in a polyethylene bag and
J

flushed with nitrogen.

Carbon dioxide decay measurements were made in mixtures of 0. 5, 1.0, and

2.0 percent carbon dioxide in argon at temperatures from 3: 30_ to 6,000°K

t at pressures from 0. 5 to 1.0 atm. Below 3,300°K the reaction was too slow to

get measurable decays in the available test time.

!
• ' A typical oscilloscope trace is shown in Figure 2. The upper tra_e is the output

of an 1P28 photomultiplier located in the same plane as the IR system. The

I photomultlplier was only used to accurately mark the shock arrival at the test

station. The output from a thin film gauge located a few inches ahead of the

observation station triggered the oscilloscope sweep. The IR signal shows a

slow rise time of about 2# sec at 5, 000°K in Figure 2. The slow rise is probably

due to the transit time of the shock across the fie!d of view coupled with the vibra-

tional relaxation of carbon dioxide. The shock temperature calculations were _

• | based on vibrational equilibrium of the carbon dioxide. The IR peak is then ._

J followed b) z decay as the carbon dioxide dissociates.

d

.J_

Figure 2. The slow rise of the signal is again apparent followed by a well-defined

exponential decay. At long times the emission approaches a plateau, probably dueto (1) the approach to equilibrium and the onset of _ack reaction and (2) the pro-
L

r ., _,,,l, ,_1carbon monoxide wh.'ch emits in thts spectral regicm providing a ;

1966003583-012
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background inter_ity. The existence of the background level is more noticeable

as the monitor wavelength is increased toward the carbon monoxide vibrational
fundamental at 4.67u. It was to minimize this complication that the measure-

-} ments were _r.a(ic at 4. 30/J, which necessitatedt the use of the polyethylene bag
] and nitrogerL flush system. $ulzmann_9)has shown that the 9bsorption of carbon .'

dioxide in carbon dioxide-argon mixtures at 4.25/_ follows the Lambert-Beer's

i Law at temperatures in excess of 3,200°K for the optical densities encountered

in the present study. In the dilute mixtures used here the 4.30# emission Js

-_ thenproportionaltothe carbon dioxideconcentration,and the exponentialdecay

of the signal in F'.gure 2 indicates a first-order decay in the carbon dioxide

] concentration.
i

Assuming the overall reaction to be

CO2 +A _ CO+O+A, (11

d(CO 2)

dt = kA (CO 2) (A) (2)

-kA(A) t
and (CO2) = (CO2)° e iS)

where (i) =. molar concentration of ith constituent (rnol/cm 3)

(i) ° = concentration immediately behind the shock

k A = overall rate constant.

The slope of a plot of _n (CO2) against time Lehind the shock gives the overall

rate constant,

1 d _n (CO2)

kA= - _ dt "" (4)i
Similarly, the slope c._ the plot of log (intensity) against time (Figure 2) yields k A.

-}

I A plot of the log (k/T 1/2) against 1/T is shown in Figure 3. It can be seen from

i1 the plot that although the initial (CO2)/(A) ratios were varied by a factor of four,the rate constants show approximately a factor of two spread with i 9 systematic

dependency on (CO2)/(A). Thus, rite form of Equation (2) appears consistent with

the data. _;_
<

1966003583-014
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A least-squarefitofthe Arrhenius equationto the datais shown by the solid

lineinFigure 3 and yields

kA = 2.26 x 1011T 1/2 e-71'900/RT mole-lcm3sec-1" (5)

The probable error inthe pre-exponentialterm is23 percent.The probable

error inthe activationenergy is 1,900 cal/mol. The collisionefficiencyis

0.02, a reasonablevalue. Molecular diameters of4.59 A forcarbon dioxide

and 3.64 _ for argon,obtainedfrom viscositymeasurements, were used to

calculatethe efficiency.

} The apparentactivationenergy of72 kcal/mol is farbelow the dissociation

]
energy of about126 kcal/mol (attemperatures of thisstudy)thatwould be

requiredforthe simple collisionmodel in which onlythekineticenergy along

thelineofcenterscontributestothe dissociation.Ifitis assumed thatthe

internaldegrees of freedom of thecollidingpartners may alsocontributeto

the dissociationenergy, the equationfor the rateconstantbecomes (I0)

k = PZ (D/RT)n/2 -D/RT(n/2)t e (6)

where n isthe number of squared terms of momentum or coordinatecontributing

tothe energy ofthe availableinternaldegrees offreedom, and

P = collisionefficiency

Z = collisionfrequency

D = dissociationenergy.

Since Z isproportionalto T I/2, Equation(6) can be recast intothe fo_'m

legT--IW+_ R-_=log -log +_log_ (7)

A plot of the left side of Equation (7) against lo_ D/RT should be a straight line

I with a slopeofn/2 and an interceptoflog (PZ/T I/2)- log (n/2I).A least-square

fit of Equation (7) yields

J kA= 9.33x 109T1/2 (126,O00/RT)5'9_e-126,000/RTmole-lcm3sec-1 (8)5.961

1966003583-016
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This equation is plotted in Figure 3 as the slightly curved dotted line. The

- equation suggests a value of n/2 equal to about six, correspondingto about sixI
_, classical oscillators or twelve squared energy terms. Carbon dioxide h:ts four

vibrational modes which provide eight squared terms and the two rotational

modes each supply one squared term for a total of only ten. Thus, the observed

temperature dependence can not be simply accounted for by the participation of

! !" the internalenergy ofcarbon dioxide.

i' [_: CARBON DIOXIDE - NITROGEN M_XT URE S

i The disso,,iationmeasurements inthe nitrogenmixtures were carriedout in

! [i the 3-inch shock tube. Because of the high heat capacity of the nitrogen diluent,i it was necessary to work behind reflected shocks to produce the carbon dioxide

dissociation temperatures. The dissociation was monitored at reflected shock
U-\

t' temperatures from 3,100 to 7,700°K and pressures from 0.5 to 15 atm in

I mixtures of 0.25 to 20 percent carbon dioxide in nitrogen. Emission measure-

i I_ ments were made 3 mm from the end wall tokeep the times behindincident
(

shocks low before arrivalof the reflectedshocks. Itwas foundthatthe

_! emission at 4. 30_ in carbon dioxide-nitrogen mixtures decayed to a higher

I plateauthanwas obtainedwiththe carbon dioxide-argonmixtures. Measure-

merits made at 2.85# on the long-wavelength edge of the 2.7. atmospheric

_ carbon dioxide absorption band were much better behaved. At 2.85u, carbon
monoxide interference is avoided. At elevated temperatures, the emission in

! the 2.7, band moves to longer wavelengths and measurements at 2.85, can be
(ll)ha 1,273°Kmade without an enclosed optical system.. Tourin s shown that at

U the emissivityof carbon dioxide-nitrogenmixtures at4.85/_is proportionaltocarbon dioxideconcentrationsand independentoftotalpressure over much of

the range of opticaldensitiesand totalpressures encounteredinthe current

H study, the higher temperatures of this study, can be expected that the
At it

; emission at 2.85/_ is proportional to the carbon dioxide concentrations as

the dissociation proceeds. Hence, disappearance rates of carbon dioxide were
determined for the carbon dioxide-nitrogen mixtures in the same manner as

U for the argon mixtures.

1966003583-017
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The shock properties were calculated on the basis of the reaction occurring in

) vibrationallyrelaxedcarbon dioxideand nitrogen.Over the range of conditions
J

for the study,the vibrationalrelaxationtime for nitrogenvariesbetween 1 to 5

} /_sec_12)whereas"" the corresponding carbon dioxide decay times vary from 10 to
!
, 500 _sec. The carbon dioxidevibrationalrelax:tiontimes are wellbelow 1 _sec

atthe conditionsofthe study.(13)"Thus the a_sumption ofvibrationalrelaxationI

prior to the occurrence of appreciable reaction appears to be a valid approximation.
J

! Rate constantsforthe dilutemixtures (0.25 and i.0 percent)of carbon dioxide
I

innitrogenare shown in Figure 4. For thesedilutemixtures the assumption of

constancyof temperature as the dissociationproceeds ismost valid.A least-square fitofthe Arrhenius equationto the datagives theoverallbimolecular

rateconstant
]

!
kN2 = 1.18 x 1011 T 1/2 e -73' 200/RTmole_lcm3sec -1 (9)

i
shown as the solidlinein Figure 4. The probable error inthe pre-exponential

term is 50 percent,with a probableerror of 3,500 cal/mol inthe apparent

*1 o

activatio_ergy. Using diameters of 3.75 _ for nitrogen and 4.59 A for carbon

dioxide gives a collision efficiency of about 0.01.

J
Ifinternalmodes axe assumed toparticipateinthe dissociation,a fitof

Equation (6)tothe datayields

kN2 - 5.00 x 109 T 1/2 (126,5.000/RT)5"97197e-126' 000/RTm°le'lcm3sec-_ (10)

which is shown as the dottedcurve in Figure 4. As withthe argon mixtures,the

equationindicatesthe participationof aboutsix classicalinternaloscillatorsinthe dissociationprocess alongwiththekineticenergy alongth..lineofcenters.

For the carbon dioxide-nitrogenencounters,the possibilityexiststhatthe

J nitrogen might also contribute its internal energy to the dissociation coordinate.
Howeve,, conservation of angular momentum prohibits the simultaneous

participation of the rotational modes of nitrogen and carbon dioxide ).n the
dissociation. H nitrogen contributes its vibrational energy to the dissociation

1966003583-018
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process along with the internal energy of carbon dioxide, the total number of

1 squared energy terms available in the encounter would be twelve. This would

marginally satisfy the application of Equation (10) to the experimental data.

_ However, the close similarityinthe dissociationrateconstantsinthe argon

, and nitrogen diluents suggest that the reaction goes by the same mechanism

in both systems. Therefore, the participation of internal modes probably does

t not fully account for the observed temperature dependence of the dissociation

rate.

!

t Included in the data in Figure 4 are three tests on one percent mixtures of

I carbon dioxide in nitrogen at initial pressures of 1, 5, and 10 mm Hg, all

brought to about the same temperature behind the reflected shocks. The results

of these tests are listed in Table I.
t

I

Table I

EFFECT OF TOTAL PRESSURE ON
I DISSOCIATION RATE CONSTANT

Initial Shock Shock aN 2
Pressure Tamp Pressure

J (mm Hg) . (OK) (atm) (mole-lcm3sec -I)

; 1 4810 0.5t5 9.67 x 109

5 4880 2.79 I. 53 x 1010t

10 4810 5.45 9.51 x 109
} .......

The rate constant for the series is relatively insensitive to the factor of ten
J i

variation in the total pressure and supports the assumption of the overall

1 bimolecularprocess.

i_ A seriesoftestswere made on mixtures ofup to 20 percentcarbon dioxide

i l in nitrogen. Although the assumption of an isothermal dissociation process is -/,

increasingly inaccurate as the carbon dioxide concentration increases, the rate _"
,,4

constantsdetermined under the simplifyingassumntlons were relativelyinsensitive to concentration and fell within the experimental uncertainty of the ,_

_l] one-_.::_t data.The dataare compared withEquation (9)in Figure5. i,I_

1966003583-020
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I

The results of the present study are in reasonably close agreement with those

l of Davies: (5) who gives

1 kA = 2.45 x 1011T1/2 e -74' J00/RT mole-lcm3sec-1 (!1)
J

and

1 :1_2 2.45 x 1011T1/2 e "Tt" 500/RT mole-lem3sec-1 (12)

_(4)
The data of Brabbs, E.,lles, and Zlataricn is given byl

k_ = 3 x 1011T 1/2"e -86' 000/P'T" mole'lcm3sec -1 (13)

J over the temperature range from 2,500 to 3,000°K. This data lies about an

order of magnitude below the argon results of the present study.
" I

Available carbon dioxide dissociation-rate data is summarized in Figure 6. A

value calculated from some data of Hurle and Gaydon(3)is--"" also included. Their

result was for pure carbon dioxide and would suggest that carbon dioxide is an

order of magnitude more efficient than nitrogen or argon as a col).ision partner

for the dissociation. All of the high temperature dissociation data has been

cbtained in shock tubes.

-i

'7'

_y

f] .7 °,S e

] 966003583-022
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' DISCUSSION

The dissociation rates of carbon di,_xide in argon and nitrogen mixtures have

been found t.o be very similar. Argon appears to be twice as efficient as

nitrogen as a collision partner in the dissociation process. The bimolecular

rate constants in dilute nitrogen mixtures were relatively insensitive to an

: order of magnitude variation in total pressure. Variation in carbon dioxide

from 0.25 to 20 percent in nitrogen yielded results that were not significantly

different. Altho,:gh the accuracy of the data is not sufficient to assess the

CO2-CO 2 collision efficiency, it _ppears that carbon dioxide is not appreciably

different from nitrogen.

The most interesting aspect of the dissociation is the apparent activation energy

of 72-73 kcal/mol. This low value indicates that the dissociation does not go

simply via

i
CO 2(I_._ + M_CO(I_) +O(3p)+M (14)

-i
, which requires 126 kcal/mol. In _ number of studies it has been possible to

reconcile an apparently low activation energy with a large dissociation vner_y

through the participation of energy of internal modes in the dissoci_hon act.

Palmer and Hornig(14)could--" account for the apparently low activation energy

of the bromine dissociation through the participation of internal energy in
/ I !.

the dissociation process. Similarly, Tsang, Bauer, and Cowperthwaite _lSp

invoked the participation of internal energy in the shock dissociation of cyanogen.
I

Similar treatment can not fully account for the argon mixtures in the present _
p

study, and at best is marginal for the nitrogen mixtures.

The apparently low temperature sensitivity may be a _.onsequence of the coupling ,_

of the dissociation and vibrational relaxation processes. It has recently been

demonstrated that the preferential dissociation from the higher vibrational levels •

] 96600:3583-024
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'. of a molecule deplete these levels and effectively decrease the dissociation rate

i i- from the level treat would exist ff a Boltzmann distribution of vibrational states
, - were to exist. Pritchard(16)has carried out an analysis for hydrogen dissociation.

f- With increasing temperat,lre, the depletion of upper vibrational states becomes

l more severe and limits the rate of climb of the dissociation rate with temperature.

i Treanor and Marrone (17) carried out a somewhat similar analysis for oxygen

• t dissociation. The decrease in the apparent _.ctivation energy in going fror_

' Brabbs' study at 2,500 to 3,000QK to the present study from 3,300 to 6,000°K

'_ is consistent with the consequences of a vibrational-dissociation coupling of the

l. kind described. Little work has been done with this model on other species.

! Brabbs, et al(4) calculated rate constants based on a vibration-dissociation

i coupling model of Nikitin and The calculated rate constants were
Sokolov. (18)

an order of magnitude greater than their data. Their calculated values are in

I close agreement with the results reported here for the argon mixtures. However,I!
' they calculated an activation energy of 112 kcal/mol, which is wen above the

i I 72 kcal/mol measured in the current study.

I . It has been suggested that the low activation energy may be a consequence of aI two step dissociation process. (4) The carbon dioxide is excited in _ _ollision
1...

to a low lying elect_'onic state from which the subsequent dissociation is rapid;

Ii CO2 (It-) + M--CO2 (3_) + M (15)

I_i C02 (3f) + M--CO (I_) + O (3P) + M (16)

[ : It has been estimated that the CO 2 (3_) state lies between 55-95 kcal/mol above

the ground state. (19) Thus the 72-73 kcal/mol activation energy could be related

r" to the excitation process of Equation (15). Ho#ever, the direct excitation is

spin f_rbidden. To avoid this obstacle, it has oeen proposed (4) that the electronic

excitation be s_hleved by a collision-induced transition from an excited vibrational

li level in the ground state, with little or no activatio_ energy. Thus, the observed

activation energy ¢ould populate a vibr._tional le,'_l of the ground state near the

'_i_ [! excited electronic state. ,_'

![I
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Brabbs has alsosuggestedthatthe singlet-triplettransRionmay be effectedby

collisionof a vib_-ationallyexcRed singletcarbon dioxidewithtripletargon. This

lattersuggestionprobably suffersfrom an insufficientsupplyoftripletargon to

maintaintLe observed carbon dioxidedissociationrates,sincethe lowestlying

argon tripletrequiresabout 270 kcal/moi excRation.With nitrogenas a collision

partner,the lowestlyingtripletis about 144 kcal above the ground stateand

similarconsiderationsare applicable.

The close agreement ofthe dissociationratesinnitrogenand argon suggesta

common mechanism. Althoughitappears thattheparticipationof internal

degrees offreedom cannotfullyaccountforthe observed temperature dependencies,

itispossiblethatthismechanism is partiallyoperative.Hansen(20)has recently

calculatedrateconstantsforthe dissociationof carbon dioxidebased on the

physicallyreasonableparticipationofthreeclassicalinternaloscillatormodes

inthe reaction.His calculatedresultsforthe carbon dioxide-argonsystem range

from twicethe experimentalvalues at3,600°K to about 10 times the experimental

resultsat5,900°K. R ispossiblethatthe observed temperaturedependence isa

consequence ofthe participationof internalenergy inthe reactionalongwiththe

depopulationofupper vibrationalstates.As temperature increasesthe latter

effectwould tendtoincreasethe differencebetween the dissociationratesthat

would be obtainedfrom an equilibriumdistributionin thevibrationallevelsof
(
] the react_.ngmolecule and the reaction-perturbeddistribution.Ouantitative

assessment of thecombined effectsofinternalenergy participatlonand depletion
-_.

! ofupper vibrationallevelsis indeedformidable.

Finally,a more complete assessment ofthe two-stepprocess (Equations(15)

and (16)) isrequiredbeforeitcs,_be set aside.Detailedspectralmeasurements

- _ and studies of other collision partners might contribute to a better understanding

,I ofthe mechanism of thehigh-temper_turedissociationof carbon dioxide.

I

ii

| 21 , _;_
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